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In this part . . .
You get a glimpse of what lies beyond Calculus II.

I give you an overview of the next two semesters of
math: Calculus III (the study of calculus in three or more
dimensions) and Differential Equations (equations with
derivatives mixed in as variables). 
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Chapter 14

Multivariable Calculus
In This Chapter
� Visualizing vectors

� Making the leap from two to three dimensions

� Understanding cylindrical and spherical coordinates

� Using partial derivatives

� Sorting out and solving multiple integrals

Space, as Captain Kirk says during the opening credits of the television
series Star Trek, is the final frontier. Multivariable calculus (also known

as Calculus III) focuses on techniques for doing calculus in space — that is,
in three dimensions.

Mathematicians have a variety of terms for three dimensions: 3-D, 3-space,
and R3 are the most common. Whatever you call it, adding a dimension makes
multivariable calculus more interesting and useful, but also a bit more tricky
than single variable calculus.

In this chapter, I give you a quick introduction to multivariable calculus,
touching on the highlights usually taught in a Calculus III class. First, I show
you how vectors provide a method for linking a value with a direction. Next,
I introduce you to three different 3-D coordinate systems: 3-D Cartesian coor-
dinates, cylindrical coordinates, and spherical coordinates.

Building on this understanding of 3-D, I discuss functions of more than one
variable, focusing on the function of two variables z = f(x, y). With an under-
standing of multivariable functions, I proceed to introduce you to the two
most important concepts in multivariable calculus: partial derivatives and
multiple integrals.

By the end of this chapter, you’ll have a great platform from which to begin
Calculus III.
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Visualizing Vectors
Vectors are used to link a real number (called a scalar) with a direction on the
plane or in space. They’re useful for navigation, where knowing what direc-
tion you’re sailing or flying in is important. Vectors also get a lot of play in
physics, where forces that push and pull are also directional. And, as you
may have guessed, Calculus III is chock full of vectors.

In this section, I introduce you to this important concept. Although I keep
this discussion in two dimensions, vectors are commonly used in three
dimensions as well.

Understanding vector basics
A simple way to think of a vector is as an arrow that has both length and
direction. By convention, a vector starts at the origin of the Cartesian plane
(0, 0) and extends a certain length in some direction. Figure 14-1 shows a 
variety of vectors.

As you can see, when a vector begins at the origin, its two components (its x
and y values) correspond to the Cartesian coordinates of its endpoint. For
example, the vector that begins at (0, 0) and ends at (3, 1) is distinguished as
the vector <3, 1>.

d = (–4, –1)

e = (2, –3)

c = (–3, 3)

b = (1, 2)

a = (3, 1)

Figure 14-1:
Vectors

starting at
the origin

are distin-
guished
by their

endpoints.
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Don’t confuse a vector <x, y> with its corresponding Cartesian pair (x, y),
which is just a point.

By convention, vectors are labeled in books with boldfaced lowercase letters:
a, b, c, and so forth (see Figure 14-1). But when you’re working with vectors
on paper, most teachers are happy to see you replace the boldface with a
little line or arrow over the letter.

Displacing a vector from the origin doesn’t change its value. For example,
Figure 14-2 shows the vector <2, 3> with a variety of starting points.

Calculate the coordinates of a vector starting at (x1, y1) and ending at (x2, y2)
as <x2 – x1, y2 – y1>. For example, here’s how to calculate the coordinates of
vectors g, h, and i in Figure 14-2:

g = <0 – –2, 4 – 1> = <2, 3>

h = <–2 – –4, –1 – –4> = <2, 3>

i = <2 – 0, 1 – –2> = <2, 3>

As you can see, regardless of the starting and ending points, these vectors
are all equivalent to each other and to f.

h = (2, 3)

i = (2, 3)

f = (2, 3)

g = (2, 3)

Figure 14-2:
All vectors

with the
same length

and
direction

are
equivalent,
regardless

of where
they start.
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Distinguishing vectors and scalars
Just as Eskimos have tons of words for snow and Italians have even more
words for pasta, mathematicians have bunches of words for real numbers.
When you began algebra, you found out quickly that a constant or a coefficient
was just a real number in a specific context.

Similarly, when you’re discussing vectors and want to refer to a real number,
use the word scalar. Only the name is different — deep in its heart, a scalar
knows only too well that it’s just a good old-fashioned real number.

Some types of vector calculations produce new vectors, while others result in
scalars. As I introduce these calculations throughout the next section, I tell
you whether to expect a vector or a scalar as a result.

Calculating with vectors
Vectors are commonly used to model forces such as wind, sea current, grav-
ity, and electromagnetism. Vector calculations are essential for all sorts of
problems where forces collide. In this section, I give you a taste of how some
simple calculations with vectors are accomplished.

Calculating magnitude
The length of a vector is called its magnitude. The notation for absolute value
(| |) is also used for the magnitude of a vector. For example, |v| refers to
magnitude of the vector v. (By the way, some textbooks represent magnitude
with double bars [|| ||] instead of single bars. Either way, the meaning is
the same.)
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What’s in a name?
A scalar is just a fancy word for a real number.
The name arises because a scalar scales a
vector — that is, it changes the scale of a
vector. For example, the real number 2 scales

the vector v by a factor of 2, so that 2v is twice
as long as v. You find out more about scalar mul-
tiplication in “Calculating with vectors.”
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Calculate the magnitude of a vector v = <x, y> by using a variation of the dis-
tance formula. This formula is itself a variation of the trusty Pythagorean 
theorem:

x yv 2 2= +

For example, calculate the magnitude of the vector n = <4, –3> as follows:

n 4 3 52 2
= + - =^ h

As you can see, the use of the absolute value bars for the magnitude of vec-
tors is appropriate: Magnitude, like all other distances, is always measured
as a nonnegative value. The magnitude of a vector is the distance from the
origin of a graph to its tip, just as the absolute value of a number is the dis-
tance from 0 on a number line to that number.

The magnitude of a vector is a scalar.

Scalar multiplication
Multiplying a vector by a scalar is called scalar multiplication. To perform
scalar multiplication, multiply the scalar by each component of the vector.
Here’s how you multiply the vector v = <x, y> by the scalar k:

kv = k<x, y> = <kx, ky>

For example, here’s how you multiply the vector p = <3, 5> by the scalars 2, 
–4, and 3

1 :

2p = 2<3, 5> = <6, 10>

–4p = –4<3, 5> = <–12, –20>

p3
1 = 3

1 <3, 5> = <1, 3
5 >

When you multiply a vector by a scalar, the result is a vector.

Geometrically speaking, scalar multiplication achieves the following:

� Scalar multiplication by a positive number other than 1 changes the
magnitude of the vector but not its direction.

� Scalar multiplication by –1 reverses its direction but doesn’t change its
magnitude.

� Scalar multiplication by any other negative number both reverses the
direction of the vector and changes its magnitude.
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Scalar multiplication can change the magnitude of a vector by either increas-
ing it or decreasing it.

� Scalar multiplication by a number greater than 1 or less than –1
increases the magnitude of the vector.

� Scalar multiplication by a fraction between –1 and 1 decreases the magni-
tude of the vector.

For example, the vector 2p is twice as long as p, the vector 2
1 p is half as long 

as p, and the vector –p is the same length as p but extends in the opposite
direction from the origin (as shown in Figure 14-3).

Finding the unit vector
Every vector has a corresponding unit vector, which has the same direction
as that vector but a magnitude of 1. To find the unit vector u of the vector v =
<x, y>, divide that vector by its magnitude as follows:

u = 
v
v

Note that this formula uses scalar multiplication, as I show you in the preced-
ing section, because the numerator is a vector and the denominator is a
scalar.

p1
2

p2

p–

p

Figure 14-3:
Scalar

multipli-
cation of
a vector

changes its
magnitude

and/or its
direction.
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As you may guess from its name, the unit vector is a vector.

For example, to find the unit vector u of the vector q = <–2, 1>, first calculate
its magnitude |q| as I show you earlier in this section:

q 2 1 5
2 2= - + =^ h

Now, use the previous formula to calculate the unit vector:

< , > < , >u
5

2 1
5

2
5

1
=

-
= -

You can check that the magnitude of resulting vector u really is 1 as follows:

|u|
5

2
5

1
2 2

= - +
J

L

K
K

J

L

K
K

N

P

O
O

N

P

O
O

5
4

5
1 1= + =

Adding and subtracting vectors
Add and subtract vectors component by component, as follows:

<x1, y1> + <x2, y2> = <x1 + x2, y1 + y2>

<x1, y1> – <x2, y2> = <x1 – x2, y1 – y2>

For example, if r = <–1, 3> and s = <4, 2>, here’s how to add and subtract these
vectors:

r + s = <–1, 3> + <4, 2> = <–1 + 4, 3 + 2> = <3, 5>

r – s = <–1, 3> – <4, 2> = <–1 – 4, 3 – 2> = <–5, 1>

When you add or subtract two vectors, the result is a vector.

Geometrically speaking, the net effects of vector addition and subtraction are
shown in Figure 14-4. In this example, the endpoint of r + s is equivalent to
the endpoint of s when s begins at the endpoint of r. Similarly, the endpoint of
r – s is equivalent to the endpoint of –s — that is, <–4, –2> — when –s begins
at the endpoint of r.
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Leaping to Another Dimension
Multivariable calculus is all about three (or more) dimensions. In this section,
I show you three important systems for plotting points in 3-D.

Understanding 3-D Cartesian coordinates
The three-dimensional (3-D) Cartesian coordinate system (also called 3-D rec-
tangular coordinates) is the natural extension of the 2-D Cartesian graph. The
key difference is the addition of a third axis, the z-axis, extending perpendicu-
larly through the origin.

Drawing a 3-D graph in two dimensions is kind of tricky. To get a better sense
about how to think in 3-D, hold up Figure 14-5 where you can compare it with
the interior corner of a room (not a round room!). Note the following:

� The x-axis corresponds to where the left-hand wall meets the floor.

� The y-axis corresponds to where the right-hand wall meets the floor.

� The z-axis corresponds to where the two walls meet.

Just as the 2-D Cartesian graph is divided into four quadrants, the 3-D graph
is divided into eight octants. From your perspective as you look at the graph,
you’re standing inside the first octant, where all values of x, y, and z are 
positive.

– s

s

– s

r – s
r

r r +
 s

s
Figure 14-4:

Add and
subtract

vectors on
the graph by

beginning
one vector

at the
endpoint of

another
vector.
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Figure 14-6 shows the complete 3-D Cartesian system with the point (1, 2, 5)
plotted. In similarity with regular Cartesian coordinates, you plot this point
by counting 1 unit in the positive x direction, and then 2 units in the positive
y direction, and finally 5 units in the positive z direction.

z

y

x

Figure 14-6:
Plotting the

point (1, 2, 5)
on the 3-D
Cartesian

coordinate
system.

z

yx

Figure 14-5:
The first

octant of
the 3-D

Cartesian
coordinate

system.
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Using alternative 3-D coordinate systems
In Chapter 2, I discuss polar coordinates, an alternative to the Cartesian
graph. Polar coordinates are useful because they allow you to express and
solve a variety of problems more easily than Cartesian coordinates.

In this section, I show you two alternatives to the 3-D Cartesian coordinate
system: cylindrical coordinates and spherical coordinates. As with polar
coordinates, both of these systems give you greater flexibility to solve a
wider range of problems.

Cylindrical coordinates
You probably remember polar coordinates from Pre-Calculus or maybe even
Calculus I. Like the Cartesian coordinate system, the polar coordinate system
assigns a pairing of values to every point on the plane. Unlike the Cartesian
coordinate system, however, these values aren’t dependent upon two perpen-
dicular axes (though these axes are often drawn in to make the graph more
readable). The key axis is the horizontal axis, which corresponds to the posi-
tive x-axis in Cartesian coordinates.

While a Cartesian pair is of the form (x, y), polar coordinates use (r, θ).
Cylindrical coordinates are simply polar coordinates with the addition of a
vertical z-axis extending from the origin, as in 3-D Cartesian coordinates (see
“Understanding 3-D Cartesian coordinates” earlier in this chapter). Every
point in space is assigned a set of cylindrical coordinates of the form (r, θ, z).

Here’s what you need to know:

� The variable r measures the distance from the z-axis to that point.

� The variable θ measures angular distance from the horizontal axis. This
angle is measured in radians rather than degrees, so that 2π = 360°. (See
Chapter 2 for more about radians.)

� The variable z measures the distance from that point to the xy-plane.

When plotting cylindrical coordinates, plot the first coordinates (r and θ) just
as you would for polar coordinates (see Chapter 2). Then plot the z-coordinate
as you would for 3-D Cartesian coordinates.

Figure 14-7 shows you how to plot the point (3, π
2 , 2) in cylindrical coordinates:

1. Count 3 units to the right of the origin on the horizontal axis (as you
would when plotting polar coordinates).
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2. Travel counterclockwise along the arc of a circle until you reach the 
line drawn at a π

2 -angle from the horizontal axis (again, as with polar
coordinates).

3. Count 2 units above the plane and plot your point there.

Spherical coordinates
Spherical coordinates are used — with slight variation — to measure latitude,
longitude, and altitude on the most important sphere of them all, the planet
Earth.

Every point in space is assigned a set of spherical coordinates of the form
(ρ, θ, φ). In case you’re not in a sorority or fraternity, ρ is the lowercase Greek
letter rho, θ is the lowercase Greek letter theta (commonly used in math to
represent an angle), φ is the lower-case Greek letter phi, which is commonly
pronounced either “fee” or “fye” (but never “foe” or “fum”).

z

i

r

Figure 14-7:
Plotting

the point 
(3, π

2 , 2) in
cylindrical

coordinates.
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The coordinate ρ corresponds to altitude. On the Earth, altitude is measured
as the distance above or below sea level. In spherical coordinates, however,
altitude indicates how far in space a point is from the origin.

The coordinate θ corresponds to longitude: A measurement of angular dis-
tance from the horizontal axis.

The coordinate φ corresponds to latitude. On the Earth, latitude is measured
as angular distance from the equator. In spherical coordinates, however, lati-
tude is measured as the angular distance from the north pole.

Plotting φ can be tricky at first. To get a feel for it, picture a globe and imagine
traveling up and down along a single longitude line. Notice that as you travel,
your latitude keeps changing, so

� At the north pole, φ = 0

� At the equator, φ = π
2

� At the south pole, φ = π

Some textbooks substitute the Greek letter ρ (rho) for r. Either way, the coor-
dinate means the same thing: altitude, which is the distance of a point from
the origin. In other textbooks, the order of the last two coordinates is
changed around. Make sure that you know which convention your book uses.

Figure 14-8 shows you how to plot a point in spherical coordinates. For exam-
ple, suppose that you want to plot the point (4, π

2 , π
4

3 ). Follow these steps to
do that:

1. Count 4 units to the right of the origin on the horizontal axis.

2. Travel counterclockwise along the arc of a circle until you reach the 
line drawn at a π

2 -angle from the horizontal axis (again, as with polar
coordinates).

3. Imagine a single longitude line arcing from the north pole of a sphere
through the point on the equator where you are right now and
onward to the south pole.

4. Travel down to the line of latitude at an angular distance of π
4
3 from 

the north pole — that is, halfway between the equator and the south
pole — and plot your point there.
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Functions of Several Variables
You know from algebra that a function y = f(x) is basically a mathematical
machine for turning one number into another. The variable x is the input vari-
able and y is the output variable so that every value of x gives you no more
than one y value.

When you graph a curve, you can use the vertical-line test to make sure that
it’s a function: Any vertical line that intersects a function intersects it at
exactly one point, as illustrated in Figure 14-9.

These concepts related to functions also carry over into functions of more
than one variable. For example, here are some functions of two variables:

z = 2x + y + 5

sinz x y y= + +

z = exy – ln (1 + x2y2)

The general form for a function of two variables is z = f(x, y). Every function
of two variables takes a Cartesian pair (x, y) as its input and in turn outputs a
z value. Looking at the three previous examples, plugging in the input (0, 1)
gives you an output of 6 for the first function, 2 for the second function, and 1
for the third.

t

Figure 14-8:
Plotting

the point 
(4, π

2 , π
4

3 )
in spherical

coordinates.
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A good way to visualize a function of two variables is as a surface floating
over the xy-plane in a 3-D Cartesian graph. (True, this surface can cross the
plane and continue below it — just as a function can cross the x-axis — but
for now, just picture it floating.) Every point on this surface looms directly
above exactly one point on the plane. That is, if you pass a vertical line
through any point on the plane, it crosses the function at no more than
one point. Figure 14-10 illustrates this concept.

y

z

x

Figure 14-10:
The vertical-

line test for
a function

in three
dimensions.

y

x

ƒ(x)

Figure 14-9:
The vertical-

line test
shows that
a function

outputs no
more than

one y value
for every

inputted x
value.

320 Part V: Advanced Topics 

22_225226-ch14.qxd  5/2/08  6:04 PM  Page 320



The concept of a function can be extended to higher dimensions. For exam-
ple, w = f(x, y, z) is the basic form for a function of three variables. Because
this function (as well as other functions of more than two variables) exists in
more than three dimensions, it’s a lot harder to picture. For now, just concen-
trate on making the leap from two to three dimensions — that is, from func-
tions of one variable to functions of two variables. Most of the multivariable
calculus that you study in Calculus III is in three dimensions. (Maybe it should
be called Calculus 3-D.)

Partial Derivatives
Partial derivatives are the higher-dimensional equivalent of the derivatives
that you know from Calculus I. Just as a derivative represents the slope of a
function on the Cartesian plane, a partial derivative represents a similar con-
cept of slope in higher dimensions. In this section, I clarify this notion of
slope in three dimensions. I also show you how to calculate the partial deriv-
atives of functions of two variables.

Measuring slope in three dimensions
In the earlier section “Functions of Several Variables,” I recommend that you
visualize a function of two variables z = f(x, y) as a surface floating over the
xy-plane of a 3-D Cartesian graph. (See Figure 14-9 for a picture of a sample
function.)

For example, take the function z = y, as shown in Figure 14-11. As you can see,
this function looks a lot like the sloped roof of a house. Imagine yourself
standing on this surface. When you walk parallel with the y-axis, your altitude
either rises or falls. In other words, as the value of y changes, so does the
value of z. But when you walk parallel with the x-axis, your altitude remains
the same; changing the value of x has no effect on z.

So intuitively, you expect that the partial derivative m
m

y
z — the slope in the 

direction of the y-axis — is 1. You also expect that the partial derivative m
m
x
z — 

the slope in the direction of the x-axis — is 0. In the next section, I show you
how to calculate partial derivatives to verify this result.
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Evaluating partial derivatives
Evaluating partial derivatives isn’t much more difficult than evaluating regu-
lar derivatives. Given a function z(x, y), the two partial derivatives are m

m
x
z

and m
m

y
z . Here’s how you calculate them:

� To calculate m
m
x
z , treat y as a constant and use x as your differentiation

variable.

� To calculate m
m

y
z , treat x as a constant and use y as your differentiation

variable.

For example, suppose that you’re given the equation z = 5x2y3. To find m
m
x
z , 

treat y as if it were a constant — that is, treat the entire factor 5y3 as if it’s one
big coefficient — and differentiate x2:

m
m
x
z = 5y3(2x) = 10xy3

To find m
m

y
z , treat x as if it were a constant — that is, treat 5x2 as if it’s the 

coefficient — and differentiate y3:

m
m

y
z = 5x2(3y2) = 15x2y2

As another example, suppose that you’re given the equation z = 2ex sin y + ln x. 
To find m

m
x
z , treat y as if it were a constant and differentiate by the variable x:

m
m
x
z = 2 sin y (ex) + x

1 = 2ex sin y + x
1

y

Surface crosses the
x-axis at a 45° angle

x
Figure 14-11:
The function

z = y.
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To find m
m

y
z , treat x as if it were a constant and differentiate by the variable y:

m
m

y
z = 2 ex cos y

As you can see, when differentiating by y, the ln x term is treated as a con-
stant and drops away completely.

Returning to the example from the previous section — the “sloped-roof” 
function z = y — here are both partial derivatives of this function:

m
m
x
z = 0

m
m

y
z = 1

As you can see, this calculation produces the predicted results.

Multiple Integrals
You already know that an integral allows you to measure area in two dimen-
sions (see Chapter 1 if this concept is unclear). And as you probably know
from solid geometry, the analog of area in three dimensions is volume.

Multiple integrals are the higher-dimensional equivalent of the good old-
fashioned integrals that you discover in Calculus II. They allow you to 
measure volume in three dimensions (or more).

Most of the multiple integrals that you’ll ever have to solve come in two vari-
eties: double integrals and triple integrals. In this section, I show you how to
understand and calculate both of these types of multiple integrals.

Measuring volume under a surface
Definite integrals provide a reliable way to measure the signed area between
a function and the x-axis as bounded by any two values of x. (I cover this in
detail in Chapters 1 and 3.) Similarly, a double integral allows you to measure
the signed volume between a function z = f(x, y) and the xy-plane as bounded
by any two values of x and any two values of y.

,f x y dxdy
0

1

0

2

## _ i
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To get a picture of this volume, look at Figure 14-12. The double integral mea-
sures the volume between f(x, y) and the xy-plane as bounded by a rectangle. In
this case, the rectangle is described by the four lines x = 0, x = 1, y = 0, and y = 2.

A double integral is really an integral inside another integral. To help you see
this, I bracket off the inner integral in the previous example:

,f x y dx dy
0

1

0

2

##
J

L

K
K _

N

P

O
Oi

When you focus on the integral inside the brackets, you can see that the
limits of integration 0 and 1 correspond with the dx — that is, x = 0 and x = 1.
Similarly, the limits of integration 0 and 2 correspond with the dy — that is,
y = 0 and y = 2.

Evaluating multiple integrals
Multiple integrals (double integrals, triple integrals, and so forth) are usually
definite integrals, so evaluating them results in a real number. Evaluating 
multiple integrals is similar to evaluating nested functions: Work from the
inside out.

Solving double integrals
Solve double integrals in two steps: First evaluate the inner integral, and then
plug this solution into the outer integral and solve that. For example, suppose
that you want to integrate the following double integral:

x
y

dy dx
x

x 2

4

5

1

3

##

y

x

1

Volume

Surface

Rectangle

2

Figure 14-12:
A double

integral
allows you

to measure
the area
under a

surface as
bounded by
a rectangle.
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To start out, place the inner integral in parentheses so that you can better
see what you’re working with:

x
y

dy dx
x

x 2

4

5

1

3

##
J

L

K
K

N

P

O
O

Now, focus on what’s inside the parentheses. For the moment, you can ignore
the rest. Your integration variable is y, so treat the variable x as if it were a
constant, moving it outside the integral:

x y dy1

x

x
2

4

5

#

Notice that the limits of integration in this integral are functions of x. So the
result of this definite integral will also be a function of x:

y x5=

x
y
3

3

= y x4=

x
x

x
x

x
x

x
x x3

5
3
4

3
125

3
64

3
613 3 3 3

2= - = - =

Now, plug this expression into the outer integral. In other words, substitute it
for what’s inside the parentheses:

x dx3
61 2

1

3

#

Evaluate this integral as usual:

x9
61

x

x
3

1

3

=
=

=

9
61 3 9

61 1
3 3

= -^ ^h h

61 9
61

9
488

= - =

Making sense of triple integrals
Triple integrals look scary, but if you take them step by step, they’re no more
difficult than regular integrals. As with double integrals, start in the center
and work your way out. For example:

x y z dx dy dz

y
z

y
z

z

z
3 5

2
4

1

2

###

Begin by separating the two inner integrals:

x y z dx dy dz

y
z

y
z

z

z
3 5

2
4

1

2

###

J

L

K
K
KK

N

P

O
O
OO

R

T

S
S
S
SS

V

X

W
W
W
WW
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Your plan of attack is to evaluate the integral in the brackets first, and then
the integral in the braces, and finally the outer integral. First things first:

x y z dx

y
z

y
z

3 5

2

#

x y z4
1

/

/

x z y

x z y
4 5

2

=
=

=

y
z y z y

z y z4
1 2

4
1

4
5

4
5= -c cm m

Notice that plugging in values for x results in an expression in terms of y and z.
Now simplify this expression to make it easier to work with:

= 4yz5 – 4
1 yz5 = 4

15 yz5

Plug this solution back in to replace the bracketed integral:

yz dy dz4
15

z

z
5

4

1

2

##
R

T

S
SS

V

X

W
WW

One integral down, two to go. This time, focus on the integral inside the
braces. This time, the integration variable is y:

yz dy4
15

z

z
5

4

#

y z8
15

y z

y z
2 5

4

=
=

=

= 8
15 (4z)2z5 –  8

15 z2z5

Again, simplify before proceeding:

= 30z7 – 8
15 z7 = 8

225 z7

Plug this result back into the integral as follows:

z dz8
225 7

1

2

#

Now evaluate this integral:

z64
225

z

z
8

1

2

=
=

=

= 64
225 28 – 64

225 18

= ,
64

57 600 – 64
225 = ,

64
57 375
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Chapter 15

What’s so Different about
Differential Equations?

In This Chapter
� Classifying different types of differential equations (DEs)

� Understanding the connection between DEs and integrals

� Checking a proposed solution to a DE

� Seeing how DEs arise in the physical world

� Using a variety of methods to solve DEs

The very mention of differential equations (DEs for short) strikes a spicy
combination of awe, horror, and utter confusion into nonmathematical

minds. Even intrepid calculus students have been known to consider a career
in art history when these untamed beasts come into focus on the radar
screen. Just what are differential equations? Where do they come from?
Why are they necessary? And how in the world do you solve them?

In this chapter, I answer these questions and give you some familiarity with
DEs. I show you how to identify the basic types of DEs so that if you’re ever
at a math department cocktail party (lucky you!), you won’t feel completely
adrift. I relate DEs to the integrals that you now understand so well. I show
you how to build your own DEs so that you’ll always have a hobby to pass
the time, and I also show you how to check DE solutions. In addition, you dis-
cover how DEs arise in physics. Finally, I show you a few simple methods for
solving some basic differential equations.
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Basics of Differential Equations
In a nutshell, a differential equation is any equation that includes at least one
derivative. For example:

dx
dy

= sin x ey

dx
d y

2

2

+ 10 dx
dy

+ 9y = 0

dx
d y

4

4

+ 
dx
d y

3

3

+ 
dx
d y

2

2

+ dx
dy

+ y = cos x

Solving a differential equation means finding the value of the dependent variable
in terms of the independent variable. Throughout this chapter, I use y as the
dependent variable, so the goal in each problem is to solve for y in terms of x.

In this section, I show you how to classify DEs. I also show you how to build
DEs and check the solution to a DE. 

Classifying DEs
As with other equations that you’ve encountered, differential equations come
in many varieties. And different varieties of DEs can be solved by using differ-
ent methods. In this section, I show you some important ways to classify DEs.

Ordinary and partial differential equations
An ordinary differential equation (ODE) has only derivatives of one variable —
that is, it has no partial derivatives (flip to Chapter 14 for more on partial 
differentiation). Here are a few examples of ODEs:

dx
dy

= x sin (x2) cos y

dx
dy

= y csc x + ex

dx
d y

2

2

+ 4xy dx
dy

+ 5y = 0

In contrast, a partial differential equation (PDE) has at least one partial deriva-
tive. Here are a few examples of PDEs:

m
m
x
u + m

m
y
u + u = ex – y

3
m
m
x
u

2 + 7 m m
m
x y
u + 6

m
m
y
u

2 = 0

m
m
t
v – k

m
m
x
v

2
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Ordinary differential equations are usually the topic of a typical Differential
Equations class in college. They’re a step or two beyond what you’re used to
working with, but many students actually find Differential Equations an easier
course than Calculus II (generally considered the most difficult class in the
calculus series). However, ODEs are limited in how well they can actually
express physical reality.

The real quarry is partial differential equations. A lot of physics gets done
with these little gems. Unfortunately, solving PDEs is one giant leap forward
in math from what the average calculus student is used to. Delving into the
kind of math that makes PDEs come alive is typically reserved for graduate
school.

Order of DEs
Differential equations are further classified according to their order. This clas-
sification is similar to the classification of polynomial equations by degree
(see Chapter 2 for more on polynomials).

First-order ODEs contain only first derivatives. For example:

dx
dy

= yex

3 dx
dy

= sin y + 2e2x

ln xy dx
dy

= 2x2 + y – tan x

Higher-order ODEs are classified, as polynomials are, by the greatest order of
their derivatives. Here are examples of second-, third-, and fourth-order ODEs:

Second-order ODE: 
dx
d y

dx
dy

y4 10 e x
2

2

+ - =

Third-order ODE: 
dx
d y

dx
d y

y 03

3

2

2

+ + =

Fourth-order ODE: cosx
dx
d y

y x2
4

4

+ =

As with polynomials, generally speaking, a higher-order DE is more difficult to
solve than one of lower order.

Linear DEs
What constitutes a linear differential equation depends slightly on who you
ask. For practical purposes, a linear first-order DE fits into the following form:

dx
dy

+ a(x)y = b(x)
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where a(x) and b(x) are functions of x. Here are a few examples of linear first-
order DEs:

dx
dy

+ y = x

dx
dy

+ 4xy = –ln x

dx
dy

– y sin x = ex

Linear DEs can often be solved, or at least simplified, using an integrating
factor. I show you how to do this later in this chapter.

A linear second-degree DE fits into the following form:

a
dx
d y

b dx
dy

cy 02

2

+ + =

where a, b, and c are all constants. Here are some examples:

dx
d y

dx
dy

y3 4 02

2

+ + =

dx
d y

dx
dy

y2 5 6 02

2

+ + =

dx
d y

02

2

=

Note that the constant a can always be reduced to 1, resulting in adjustments
to the other two coefficients. Linear second-degree DEs are usually an impor-
tant topic in a college-level course in differential equations. Solving them
requires knowledge of matrices and complex numbers that is beyond the
scope of this book.

Looking more closely at DEs
You don’t have to play professional baseball to enjoy baseball. Instead, you
can enjoy the game from the bleachers or, if you prefer, from a nice cushy
chair in front of the TV. Similarly, you don’t have to get too deep into differen-
tial equations to gain a general understanding of how they work. In this sec-
tion, I give you front-row seats to the game of differential equations.

How every integral is a DE
The integral is a particular example of a more general type of equation — the
differential equation. To see how this is so, suppose that you’re working with
this nice little integral:

cosy x dx= #
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Differentiating both sides turns it into a DE:

cosdx
dy

x=

Of course, you know how to solve this DE by thinking of it as an integral:

y = sin x + C

So in general, when a DE is of the form

dx
dy

= f(x)

with f(x) an arbitrary function of x, you can express that DE as an integral and
solve it by integrating.

Why building DEs is easier than solving them
The reason that the DE in the last section is so simple to solve is that the
derivative is isolated on one side of the equation. DEs attain a new level of
difficulty when the derivative isn’t isolated.

A good analogy can be made in lower math, when you make the jump from
arithmetic to algebra. For example, here’s an arithmetic problem:

x = 20 – (42 + 3)

Even though this is technically an algebra problem, you can solve it without
algebra because x is isolated at the start of the problem. However, the ball-
game changes when x becomes more enmeshed in the equation. For example:

2x3 – x2 + 5x – 17 = 0

Arithmetic isn’t strong enough for this problem, so algebra takes over.
Similarly, when derivatives get entangled into the fabric of an equation —
as in most of the DEs I show you earlier in “Classifying DEs” — integrating is
no longer effective and the search for new methods begins.

Although solving DEs is often tricky, building them is easy. For example, sup-
pose that you start with this simple quadratic equation:

y = 3x2 + 4x – 5

Now, find the first and second derivatives:

dx
dy

= 6x + 4

dx
d y

2

2

= 6
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Adding up the left and right sides of all three equations gives you the follow-
ing differential equation:

y + dx
dy

+ 
dx
d y

2

2

= 3x2 + 10x + 5

Because you built the equation yourself, you know what y equals. But if you
hand this equation off to some other students, they probably wouldn’t be
able to guess how you built it, so they would have to do some work to solve it
for y. For example, here’s another DE:

y + dx
dy

+ 
dx
d y

2

2

+ 
dx
d y

3

2

= 0

This equation probably looks difficult because you don’t have much informa-
tion. And yet, after I tell you the solution, it appears simple:

y = sin x dx
dy

= cos x

dx
d y

2

2

= –sin x
dx
d y

4

3

= –cos x

But even after you have the solution, how do you know whether it’s the only
solution? For starters, y = –sin x, y = cos x, and y = –cos x are all solutions. Do
other solutions exist? How do you find them? And how do you know when
you have them all?

Another difficulty arises when y itself becomes tangled up in the equation.
For example, how do you solve this equation for y?

sin
dx
dy x

e y=

As you can see, differential equations contain treacherous subtleties that you
don’t find in basic calculus.

Checking DE solutions
Even if you don’t know how to find a solution to a differential equation, you
can always check whether a proposed solution works. This is simply a matter
of plugging the proposed value of the dependent variable — I use y through-
out this chapter — into both sides of the equation to see whether equality is
maintained.

For example, here’s a DE:

dx
dy

= 3y + 4e3x cos x

You may not have a clue how to begin solving this DE, but imagine that an
angel lands on your pen and offers you this solution:

y = 4e3x sin x
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You can check to see whether this angel really knows math by plugging in
this value of y as follows:

dx
dy

= 3y + 4e3x cos x

dx
d 4e3x sin x = 3(4e3x sin x) + 4e3x cos x

4(3e3x sin x + e3x cos x) = 12 e3x sin x + 4e3x cos x

= 12 e3x sin x + 4e3x cos x = 12 e3x sin x + 4e3x cos x

Because the left and right sides of the equation are equal, the angel’s solution
checks out.

Solving Differential Equations
In this section, I show you how to solve a few types of DEs. First, you solve
everybody’s favorite DE, the separable equation. Next, you put this under-
standing to work to solve an initial-value problem (IVP). Finally, I show you
how to solve a linear first-order DE by using an integrating factor.

Solving separable equations
Differential equations become harder to solve the more entangled they
become. In certain cases, however, an equation that looks all tangled up is
actually easy to tease apart. Equations of this kind are called separable equa-
tions (or autonomous equations), and they fit into the following form:

dx
dy

= f(x) · g(y)

Separable equations are relatively easy to solve. For example, suppose that
you want to solve the following problem:

sin
dx
dy x

e y=

You can think of the symbol dx
dy

as a fraction and isolate the x and y terms of 

this equation on opposite sides of the equal sign:

ey dy = sin x dx

Now, integrate both sides:

sindy x dxe y = ##

ey + C1 = –cos x + C2
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In an important sense, the previous step is questionable because the variable
of integration is different on each side of the equal sign. You may think “No
problem, it’s all integration!” But imagine if you tried to divide one side of an
equation by 2 and the other by 3, and then laughed it off with “It’s all divi-
sion!” Clearly, you’d have a problem. The good news, however, is that for
technical reasons beyond the scope of this book, integrating both sides by
different variables actually produces the correct answer.

C1 and C2 are both constants, so you can use the equation C = C2 – C1 to sim-
plify the equation:

ey = –cos x + C

Next, use a natural log to undo the exponent, and then simplify:

ln e y = ln (–cos x + C)

y = ln (–cos x + C)

To check this solution, substitute this value for y into both sides of the origi-
nal equation:

sin
dx
dy x

e y=

ln cos sin
dx
d x C x

eln cos x C
- + =

- =
^

]
h

g

ln cos cos
sin

dx
d x C x C

x
- + =

- +
^ h

cos sin cos
sin

x C x x C
x1 :

- +
=

- +

cos
sin

cos
sin

x C
x

x C
x

- +
=

- +

Solving initial-value problems (IVPs)
In Chapter 3, I show you that the definite integral is a particular example of a
whole family of indefinite integrals. In a similar way, an initial-value problem
(IVP) is a particular example of a solution to a differential equation. Every IVP
gives you extra information — called an initial value — that allows you to use
the general solution to a DE to obtain a particular solution.

334 Part V: Advanced Topics 

23_225226-ch15.qxd  5/2/08  6:27 PM  Page 334



For example, here’s an initial-value problem:

dx
dy

= y sec2 x y(0) = 5

This problem includes not only a DE, but also an additional equation. To
understand what this equation tells you, remember that y is a dependent vari-
able, a function of x. So, the notation y(0) = 5 means “when x = 0, y = 5.” You
see how this information comes into play as I continue with this example.

To solve an IVP, you first have to solve the DE. Do this by finding its general
solution without worrying about the initial value. Fortunately, this DE is a
separable equation, which you know how to solve from the last section:

y
1 dy = sec2 x dx

Integrate both sides:

secy dy x dx1 2= ##

ln y = tan x + C

In this last step, I use C to consolidate the constants of integration from
both sides of the equation into a single constant C. (If this doesn’t make
sense, I explain why in “Solving separable equations” earlier in this chapter.)
Next, I undo the natural log by using e:

eln y = etan x + C

y = etan x · eC

Because eC is a constant, this equation can be further simplified by using the
substitution D = eC:

y = Detan x

Before moving on, check to make sure that this solution is correct by substi-
tuting this value of y into both sides of the original equation:

dx
dy

= y sec2 x

dx
d Detan x = Detan x sec2 x

Detan x sec2 x = Detan x sec2 x
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This checks out, so y = Detan x is, indeed, the general solution to the DE. To
solve the initial-value problem, however, I need to find the specific value of
the variable D by using the additional information I have: When x = 0, y = 5.
Plugging both of these values into the equation makes it possible to solve
for D:

5 = Detan 0

5 = De0

5 = D

Now, plug this value of D back into the general solution of the problem to get
the IVP solution:

y = 5etan x

This solution satisfies not only the differential equation dx
dy

= y sec2 x but also
the initial value y(0) = 5.

Using an integrating factor
As I mention earlier in this chapter, in “Classifying DEs,” a linear first-order
equation takes the following form:

dx
dy

+ a(x)y = b(x)

A clever method for solving DEs in this form involves multiplying the entire
equation by an integrating factor. Follow these steps:

1. Calculate the integrating factor.

2. Multiply the DE by this integrating factor.

3. Restate the left side of the equation as a single derivative.

4. Integrate both sides of the equation and solve for y.

Don’t worry if these steps don’t mean much to you. In the upcoming sections,
I show you what an integrating factor is and how to use it to solve linear first-
order DEs.
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Getting very lucky
To help you understand how multiplying by an integrating factor works, I set
up an equation that practically solves itself — that is, if you know what to do:

dx
dy

x
y2

+ = 0

Notice that this is a linear first-degree DE, with a(x) = x
2 and b(x) = 0. I now

tweak this equation by multiplying every term by x2 (you see why shortly):

dx
dy

x x
y

x x
2

02 2 2+ =$ $ $

Next, I use algebra to do a little simplifying and rearranging:

dx
dy

· x2 + 2x · y = 0

Now, here’s where I appear to get extremely lucky: The two terms on the left
side of the equation just happen to be the result of the application of the
Product Rule to the expression y · x2 (for more on the Product Rule, see
Chapter 2):

dx
d (y · x2) = dx

dy
· x2 + 2x · y

Notice that the right side of this equation is exactly the same as the left side
of the previous equation. So I can make the following substitution:

dx
d (y · x2) = 0

Now, to undo the derivative on the left side, I integrate both sides, and then I
solve for y:

dx
d y x dx dx02 =$ ## _ i; E

y · x2 = C

y = 
x
C

2

To check this solution, I plug this value of y back into the original equation:

dx
dy

x
y2

+ = 0

dx
d

x
C

x x
C2

2 2+ $ = 0

x
C

x
C2 2

3 3
-

+ = 0

0 = 0
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Making your luck
The previous example works because I found a way to multiply the entire
equation by a factor that made the left side of the equation look like a deriva-
tive resulting from the Product Rule. Although this looked lucky, if you know
what to multiply by, every linear first-order DE can be transformed in this way.
Recall that the form of a linear first-order DE is as follows:

dx
dy

+ a(x)y = b(x)

The trick is to multiply the DE by an integrating factor based on a(x). Here’s
the integrating factor:

e ( )a x dx#

How the integrating factor is originally derived is beyond the scope of this
book. All you need to know here is that it works.

For example, in the previous problem, you know that a(x) = x
2 . So here’s how

to find the integrating factor:

e e e( ) lna x dx x dx x2 2= =# #

Remember that 2 ln x = ln x2, so:

e ln x 2

= x2

As you can see, the integrating factor x2 is the exact value that I multiplied by
to solve the problem. To see how this process works now that you know the
trick, here’s another DE to solve:

dx
dy

+ 3y = ex

In this case, a(x) = 3, so compute the integrating factor as follows:

e e e( )a x dx dx x3 3= =# #

Now, multiply every term in the equation by this factor:

dx
dy

· e3x + 3y · e3x = ex· e3x

If you like, use algebra to simplify the right side and rearrange the left side:

dx
dy

· e3x + 3e3x · y = e4x
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Now, you can see how the left side of this equation looks like the result of the
Product Rule applied to evaluate the following derivative:

dx
d (y · e3x) = dx

dy
· e3x + 3e3x · y

Because the right side of this equation is the same as the left side of the pre-
vious equation, I can make the following substitution:

dx
d (y · e3x) = e4x

Notice that I change the left side of the equation by using the Product Rule in
reverse. That is, I’m expressing the whole left side as a single derivative. Now,
I can integrate both sides to undo this derivative:

dx
d y dx dxe ex x3 4=$# #_ i; E

y · e3x = 4
e x4

+ C

Now, solve for y and simplify:

y = C
4e
e

ex

x

x3

4

3+ = 4
e x

+ Ce–3x

To check this answer, substitute this value of y back into the original DE:

dx
dy

+ 3y = ex

dx
d C C4 3 4

e e e e
x

x
x

x3 3+ + +- -
c cm m = ex

C C4 3 4
3 3e e e e

x
x

x
x3 3- + +- - = ex

4 4
3e ex x

+ = ex

ex = ex

As if by magic, this answer checks out, so the solution is valid.
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